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Torre C5-Parell-2a pl, 08193 Bellaterra (Barcelona), Spain

2 Center of Theoretical Physics, Jamia Millia Islamia, Jamia Nagar, Delhi-110092, India
3 Department of Physics, Nagoya University, Nagoya 464-8602, Japan
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Abstract. We investigate the possibility of a dark energy universe emerging from an action with higher-order
string loop corrections to Einstein gravity in the presence of a massless dilaton. These curvature corrections
(up to R4order) are different depending upon the type of (super-) string model which is considered. We find
in fact that type II, heterotic, and bosonic strings respond differently to dark energy. A dark energy solution
is shown to exist in the case of the bosonic string, while the other two theories do not lead to realistic dark
energy universes. A detailed analysis of the dynamical stability of the de Sitter solution is presented for the
case of a bosonic string. A general prescription for the construction of a de Sitter solution for the low-energy
(super-) string effective action is also indicated. Beyond the low-energy (super-) string effective action, when
the higher-curvature correction coefficients depend on the dilaton, the reconstruction of the theory from the
expansion history of the universe is done with a corresponding prescription for the scalar potentials.

PACS. 11.25.-w; 95.36.+x; 98.80.-k

1 Introduction

The Einstein equations in their original form, with an
energy-momentum tensor for standard matter on the right
hand side, cannot account for the observed accelerated
expansion of our universe. The late-time acceleration of
the universe, which is directly supported by supernovae
observations, and also indirectly, through observations of
the microwave background, of the large-scale structure,
of weak lensing, and of baryon oscillations, poses one of
the most important challenges to modern cosmology. The
standard lore aimed at capturing this important effect is
related to the introduction of the energy-momentum ten-
sor of exotic matter with large negative pressure (dark
energy) in the Einstein equations. The simplest known ex-
ample of dark energy (for recent reviews, see [1–5]) is pro-
vided by the cosmological constant. This does not require
any ad hoc assumption for its introduction, as is automat-
ically present in the Einstein equations, by virtue of the
Bianchi identities. The field theoretic understanding of Λ
is far from being satisfactory. Efforts have recently been
made to obtain Λ in the framework of string theory, which
leads to a complicated landscape of de Sitter vacua. It is
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hard to believe that we happen to live in one of the 10100

or more vacua predicted by the theory [6]. One might take
the simplified view that, like G, the cosmological constant
Λ is a fundamental constant of the classical general the-
ory of relativity and that it should be determined from
large-scale observations. It is interesting to remark that
the ΛCDM model is consistent with the observations at
present. Unfortunately, the non-evolving nature of Λ leads
to a non-acceptable fine-tuning problem. We do not know
how the present scale of the cosmological constant is re-
lated to the Planck or the supersymmetry breaking scale;
perhaps, some deep physics is at play here that escapes our
present understanding.
The fine-tuning problem, associated with Λ, can be al-

leviated in scalar field models that do not disturb the ther-
mal history of the universe and can successfully mimic Λ
at late times. A variety of scalar fields have been inves-
tigated to this end [1, 7, 8]; some of them are motivated
by field/string theory and the others are introduced owing
to phenomenological considerations. It is quite disappoint-
ing that a scalar field description lacks predictive power;
given a priori a cosmic evolution, one can always construct
a field potential that would give rise to it. These models
should, however, not be written off, and should be judged
by the generic features that might arise from them. For
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instance, the tracker models have remarkable features al-
lowing them to alleviate the fine-tuning and coincidence
problems. Present data are insufficient in order to conclude
whether or not the dark energy has dynamics; thus, the
quest for the metamorphosis of dark energy continues.
The other alternative for getting accelerated expansion

is related to modifications of the geometry itself or the
left hand side of the Einstein equations. There are several
ways of modifying gravity (for a review, see [9]). Higher
dimensional (including stringy) effects might lead to large-
scale modifications of gravity. Another approach, which
is largely motivated by phenomenological considerations,
is related to the modification of the form of the gravita-
tional action (like F (R) gravity, etc.). The third intrigu-
ing alternative is provided by the higher-order curvature
corrections to Einstein gravity due to low-energy (super-)
string effective action [10]. The leading order correction in
the string expansion parameter α′ is given by a Gauss–
Bonnet (GB) term, which has several remarkable features
and which was proposed as a dark energy model [11]. The
next-to-leading corrections, cubic and quartic in the cur-
vature, crucially depend upon the type of string model
under consideration. The higher-order curvature invariants
are coupled to scalar (dilaton/modulus) fields. One might
try to fix these fields by invoking some non-perturbative
mechanism. In that case, the GB term does not contribute
to the four-dimensional equations of motion. However, the
higher-order curvature terms contribute in this case. Their
presence crucially modifies the fate of a phantom dark en-
ergy universe. Since it is difficult to realize any scenario
with a fixed dilaton or modulus field, the analysis involv-
ing dynamically evolving fields becomes very important.
A number of papers [11–24] are devoted to the possibil-
ity of having a dark energy with a GB term and a dila-
ton/modulus field with a non-trivial potential. A steep
exponential potential exhibits a scaling solution that mim-
ics the background (matter/radiation); the nucleosynthe-
sis constraint is satisfied provided the slope of the potential
is large [25]. The scaling solution describes a decelerat-
ing universe. It is surprising that the GB term can cause
a transition from the matter dominated era to a dark en-
ergy universe and it can also lead to transient phantom
energy, provided the slope of the exponential potential and
the dilaton coupling to the GB invariant are chosen prop-
erly [25], or a more complicated choice of scalar potentials
is done [26]. In such a scenario with the exponential poten-
tial, it is quite difficult to satisfy the nucleosynthesis con-
straint and, secondly, the coupling also becomes very large.
Since the introduction of the dilaton potential needs as-
sumptions about some non-perturbative mechanisms and
the massless dilaton naturally arises in the string loop ex-
pansion of the low energy effective theory, it is important
to explore the possibility of a dark energy solution with
a massless dilaton. To this effect, the second order curva-
ture correction was considered in [12]. This next-to-leading
correction contains a higher-order Euler density that iden-
tically vanishes for space-time dimensions less than six;
the other remaining term is a curvature invariant of order
three. The model can lead to a stable dark energy solu-
tion. It is interesting to note that the third-order correc-

tion in α′ crucially depends on the type of string theory
model. In this paper we incorporate string loop correc-
tions up to order three in α′ to the Einstein–Hilbert action
with a massless dilaton. We investigate the cosmological
dynamics of the model and explore whether a particular
string type is actually sensitive to the existence of dark en-
ergy.We also outline a general prescription of the construc-
tion of the de Sitter solution in presence of higher-order
curvature invariants coupled to the dilaton field.
The paper is organized as follows. In Sect. 2, we set

up the general evolution equations from a string effect-
ive Lagrangian that incorporates curvature corrections,
up to order four in R, coupled to a dynamically evolv-
ing massless dilaton. In Sect. 3, we explore the viability
of a dark energy solution for models based upon type II,
heterotic and bosonic strings in the framework of a per-
turbative string theoretic set up. Section 4 is devoted to
the stability analysis of the de Sitter solution in the case
of a bosonic string model. In Sect. 5, we present a recon-
struction program for a general action with higher-order
curvature invariants coupled to dilaton functions. Section 6
outlines the construction of the de Sitter solution in the
general case. Section 7 presents our conclusions and an
outlook.

2 Evolution equations

The process of compactification of the string theory
from higher to four dimensions introduces scalar (mod-
uli/dilaton) fields that are coupled to curvature invariants.
For simplicity, we shall neglect the moduli fields associated
with the radii of the internal space. In what follows, we con-
sider the low-energy effective string theory action [10, 13]

S =

∫
dDx
√
−g

[
R

2
+Lφ+Lc+ . . .

]
, (1)

where φ denotes the dilaton field, which is related to the
string coupling, R is the scalar curvature, Lφ denotes the
scalar field Lagrangian, and Lc encodes the string curva-
ture correction term to the Einstein–Hilbert: action [10]

Lφ =−∂µφ∂
µφ−V (φ) , (2)

Lc = c1α
′e
2 φ
φ0 L(1)c + c2α

′2e
4 φ
φ0 L(2)c + c3α

′3e
6 φ
φ0 L(3)c , (3)

where α′ is the string expansion parameter, L(1)c , L
(2)
c , and

L
(3)
c describe the leading order (GB term), the second-
order and third-order curvature corrections, respectively.
The terms L(1)c , L

(2)
c and L

(3)
c in the Lagrangian have the

following form:

L(1)c =Ω2 , (4)

L(2)c = 2Ω3+R
µν
αβR

αβ
λρR

λρ
µν , (5)

L(3)c = L31− δHL32−
δB

2
L33 . (6)
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Here δB, δH = 0, 1 and

Ω2 =R
2−4RµνR

µν +RµναβR
µναβ , (7)

Ω3 ∝ ε
µνρστηεµ′ν′ρ′σ′τ ′η′R

µ′ν′

µν R
ρ′σ′

ρσ R
τ ′η′

τη , (8)

L31 = ζ(3)RµνρσR
ανρβ
(
RµγδβR

δσ
αγ−2R

µγ
δαR

δσ
βγ

)
, (9)

L32 =
1

8

(
RµναβR

µναβ
)2
+
1

4
RγδµνR

ρσ
γδR

αβ
ρσR

µν
αβ

−
1

2
RαβµνR

ρσ
αβR

µ
σγδR

νγδ
ρ −RαβµνR

ρν
αβR

γδ
ρσR

µσ
γδ , (10)

L33 =
(
RµναβR

µναβ
)2
−10RµναβR

µνασRσγδρR
βγδρ

−RµναβR
µνρ
σ R

βσγδRαδγρ . (11)

The correction terms are different depending on the type of
string theory; the dependence is encoded in the curvature
invariants and in the coefficients (c1, c2, c3) and δH, δB.

• For the type II superstring theory: (c1, c2, c3) =
(0, 0, 1/8) and δH = δB = 0.

• For the heterotic superstring theory: (c1, c2, c3) =
(1/8, 0, 1/8) and δH = 1, δB = 0.

• For the bosonic superstring theory: (c1, c2, c3) =
(1/4, 1/48, 1/8) and δH = 0, δB = 1.

The higher-order curvature corrections look compli-
cated, in general. However, the analysis become tractable
in the case of a Friedmann–Robertson–Walker universe. In
what follows we will specialize to the case of the FRWmet-
ric with a lapse function N(t), namely,

ds2 =−N(t)2dt2+a(t)2
3∑
i=1

(dxi)2 . (12)

In the FRW background, the leading and next-to-leading
corrections simplify; they depend upon the lapse function
and its time derivative Ṅ . Since only terms linear in Ṅ con-
tribute to the evolution equations, we shall omit the higher
powers of the time derivative of the lapse function. We then
have the following expressions for the curvature invariants:

L(1)c =
24

N4
H2I−

24Ṅ

N6
H3 , (13)

L(2)c =
24

N6
(H6+ I3)−

72Ṅ

N7
HI2 , (14)

and

L31 =−
6ζ(3)

N8
(3H8+4H4I2+4H2I3+ I4)

+
6ζ(3)Ṅ

N9
(8H5I+12H3I2+4HI3) , (15)

L32 =−
6

N8
(5H8+2H4I2+5I4)

+
6Ṅ

N9
(4H5I+20HI3) , (16)

L33 =−
6

N8
(60H8+32H4I2+60I4)

+
6Ṅ

N9
(64H5I+240HI3) . (17)

Here I = Ḣ+H2.
Varying the action (1) with respect toN and Ṅ , we find

the modified Friedmann equation:

3H2 = ρc+ρφ , (18)

where

ρc =
3∑
m=1

{
ξ̇m(φ)

(
∂L(m)c

∂Ṅ

)
+ ξm(φ)

(
d

dt

(
∂L(m)c

∂Ṅ

)

+3H
∂L(m)c

∂Ṅ
−
∂L(m)c
∂N

−L(m)c

)}∣∣∣∣
N=1

, (19)

and where ξ1(φ), ξ2(φ) and ξ3(φ) come from the first-,
second- and third-order correction terms, respectively, and
can be written as

ξm(φ) = α
′me

2m φ
φ0 , m= 1, 2, 3 . (20)

Let us consider the scalar field equation of motion derived
by varying the action (1) keeping in mind the perturbative
string theoretic description (V (φ) = 0)

φ̈+3Hφ̇− ξ′1L
(1)
c − ξ

′
2L
(2)
c − ξ

′
3L
(3)
c = 0 . (21)

The evolution equations look complicated, in general
(see (A.1) and (A.2) in the appendix), and the analysis
of the cosmological dynamics seems to be a difficult task.
We, therefore, take a different route in the search of a dark
energy solution. We shall consider the following simple so-
lution [11] and examine its viability in the present case:

H =
h0

t
, φ= φ0 ln

t

t1
,

for h0 > 0, and

H =−
h0

ts− t
, φ= φ0 ln

ts− t

t1
, (22)

when h0 < 0 with t1 as an undetermined constant. This so-
lution leads to a constant equation of state

weff =−1−
2Ḣ

3H2
=−1+

2

3h0
, (23)

which corresponds to dark energy (respectively phantom
dark energy) for h0 > 0 (respectively h0 < 0), de Sitter so-
lution is obtained for h0→∞.
We will next analyze in detail whether the evolution

equations, (A.1) and (A.2), exhibit the given solution (22)
for realistic values of the constants h0, t1, and φ0. By sub-
stituting (22) into (A.1) and (A.2), we obtain the algebraic
equations

−φ20+3h0φ
2
0+f1(h0)X+f2(h0)X

2+f3(h0)X
3 = 0 (24)

and

φ20
2
−3h20+f4(h0)X+f5(h0)X

2+f6(h0)X
3 = 0 , (25)
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where X ≡ α′/t21 and f
′s are given by the following alge-

braic expressions:

f1(h0) = δHB
(
12h30−12h

4
0

)
,

f2(h0) = δB
(
2h30−6h

4
0+6h

5
0−4h

6
0

)
,

f3(h0) = ζ(3)

(
9

2
h40−36h

5
0+99h

6
0−108h

7
0+54h

8
0

)

+ δH

(
−
45

2
h40+90h

5
0−144h

6
0+108h

7
0−54h

8
0

)

+ δB
(
−135h40+540h

5
0−882h

6
0+684h

7
0−342h

8
0

)
,

f4(h0) = δHB
(
−12h30

)
,

f5(h0) = δB

(
−h30+3h

5
0+
1

2
h60

)
,

f6(h0) = ζ(3)

(
−
9

4
h40+15h

5
0−
57

2
h60+9h

7
0−9h

8
0

)

+ δH

(
45

4
h40−15h

5
0−15h

6
0+36h

7
0+9h

8
0

)

+ δB

(
135

2
h40−90h

5
0−75h

6
0+198h

7
0+57h

8
0

)
,

(26)

where δHB = 0, 1/2, 1 for type II, heterotic and bosonic
string, respectively.
In what follows we would like to analyze the validity

of (24) and (25) for realistic values of the constants φ0 and
t1, corresponding to specific values of h0 relevant to dark
energy observations.

3 Dark energy solution

We shall first examine the existence of dark energy solu-
tions (22) in general and then will specialize to particular
types of string models. We will be interested in finding out
whether dark energy can distinguish amongst the string
types. The case of the bosonic string will be of special
interest.

3.1 The general case

We can combine (24) and (25) into a single cubic equation
as

A3(h0)X
3+A2(h0)X

2+A1(h0)X−6h
2
0(1−3h0) = 0 ,

(27)

where the coefficients ofX are given by

Am(h0) = fm(h0)+2(1−3h0)f3+m(h0) , m= 1, 2, 3 .
(28)

In the case ofm≤ 3, we always have the analytic formulae
for the roots, which will be useful for the interpretation of
the relation and the contribution from each of the correc-
tion terms to the solution.

The positivity of X, the real root of the cubic equation
will impose a restriction on the possible values of h0. The
real solution for (27) can be obtained from the cubic root
formula:

X(h0) = s1(h0)+ s2(h0)−
1

3

A2(h0)

A3(h0)
, (29)

where

s1(h0) = [r+(q
3+ r2)

1
2 ]
1
3 ,

s2(h0) = [r− (q
3+ r2)

1
2 ]
1
3 ,

r(h0) =
3h20(1−3h0)

A3(h0)
+
1

6

A1(h0)A2(h0)

A3(h0)2
−
1

27

(
A2(h0)

A3(h0)

)3
,

q(h0) =
1

3

A1(h0)

A3(h0)
−
1

9

(
A2(h0)

A3(h0)

)2
. (30)

3.1.1 X(h0)≡ α′/t21 > 0

The cubic equation has one real root X provided
q3+ r2 > 0. We have checked numerically that the relation
q3+ r2 > 0 is true for all h0 in the region 0.8 < |h0|, for
all three string types. Equation (29) should then be used
in order to find the range of h0 such that X(h0) > 0 and
the corresponding equation of state parameter weff be con-
fronted with the observations.

3.1.2 Ωc < 1

Another important constraint on h0 is dictated by the fact
that φ20 < 1, as the dilaton is a real scalar function. The
cubic equation (27) does not involve φ0; it enters into the
Friedmann equation through ρc, which encodes all higher-
order curvature corrections. Using the Friedmann equa-
tion (18) and (22), we find

3h20 = ρφ+ρc ,

1 =
ρφ

3h20
+
ρc

3h20
≡
φ20
6h20
+
ρc

3h20
,

1 =Ωφ+Ωc , (31)

where Ωc is the dimensionless density parameter con-
tributed by the correction terms. The constraint Ωc < 1
is equivalent to φ20 > 0, otherwise the dilaton would turn
complex and this would put a bound on the possible
range of h0 which should be combined with the constraint
dictated by the positivity of real root of the cubic equa-
tion (27). The range of h0 compatible with the two con-
straints should then be confronted with the observation on
the equation of state for the dark energy. The recent an-
alysis of the three-year WMAP data combined with the
supernova legacy survey (SNLS) constrains the dark en-
ergy equation of state parameter wDE. At 68% confidence
level, the best fit value wDE is given by wDE =−1.06

+0.07
−0.08.

If the flat prior is imposed, the parameter is constrained by
wDE =−0.97

+0.07
−0.09, which translates into a bound on h0, as

h0 ≤−11.11 and h0 ≥ 6.67.
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We next turn to the individual string models to find
out their viability as dark energies, in view of the aforesaid
constraints.

3.2 Type II string

The case of a type II string is simplest to investigate. In this
case, we have A1(h0) =A2(h0) = 0 and (27) reduces to

A3(h0)X(h0)
3−6h20(1−3h0) = 0 , (32)

which has the following solution:

X(h0) = (2r(h0))
1
3 =

(
6h20(1−3h0)

A3(h0)

) 1
3

. (33)

In this case the expression of A3 simplifies to

A3(h0) = f3(h0)+2(1−3h0)f6(h0) , (34)

with

f3(h0) = ζ(3)

(
9

2
h40−36h

5
0+99h

6
0−108h

7
0+54h

8
0

)
,

f6(h0) = ζ(3)

(
−
9

4
h40+15h

5
0−
57

2
h60+9h

7
0−9h

8
0

)
.

(35)

Let us first implement the conditionX(h0) = α
′/t21 > 0.

The sign of A3 is important for constraining h0 using the
positivity ofX. From (35), we obtain

A3(h0) = ζ(3)

(
15

2
h50−48h

6+81h70−18h
8
0+54h

9
0

)
.

We have plotted A3 in Fig. 1. The plot shows that
A3(h0)> 0 for h0 > 0 and A3(h0) < 0 when h0 < 0.
Using (33), we get the possible region that givesX(h0)> 0
as 0< h0 < 1/3 which always yields weff > 1. Thus, no vi-
able solution exists in this case. Therefore, up to 4th order
corrections in R, the type II superstring model is clearly
ruled out as dark energy (for the Ωc < 1 case, see Fig. 2).

Fig. 1. A plot of A3 against h0 is shown for type II string
model

Fig. 2. A plot of Ωc against h0 for the type II string shows that
for h0 > 0, the density parameter Ωc < 1

3.3 Heterotic string

In this case A2(h0) = 0, and A1(h0) and A3(h0) are given
by

A3(h0) = f3(h0)+2(1−3h0)f6(h0) ,

A1(h0) = f1(h0)+2(1−3h0)f4(h0) ,

where

A3(h0) =−
15

2
h50−84h

6
0+270h

7
0−252h

8
0−54h

9
0

+ ζ(3)

(
15

2
h50−48h

6
0+81h

7
0−18h

8
0+54h

9
0

)

≈ 1.515h50−141.699h
6
0+367.367h

7
0

−273.637h80+10.911h
9
0 . (36)

In this case, we check the consistency of X(h0) and Ωc
numerically as (33) does not seem to hold in this case. How-

Fig. 3. A plot of X against h0 shows that 0< h0 < 23.68 is the
viable range of h0 for the heterotic string
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Fig. 4. A plot of Ωc versus h0 for the heterotic string model.
The region given by Ω < 1 shows the allowed range of h0, which
corresponds to 0.8< h0 ≤ 5.04 and h0 > 23.68

ever, as we remark below, A3 might still be used as a yard
stick for the consistency check.
We plot X(h0) in Fig. 3, which shows that X > 0 pro-

vided 0< h0 < 23.68. This constraint should be combined
with Ωc < 1. The plot of Ωc in Fig. 4 tells us that either
0<h0 < 5.04 or h0 > 23.68. Thus, the allowed range for the
parameter h0 is 0< h0 < 5.04, which corresponds to weff ≥
−0.868. Such a value of the equation of state parameter is
ruled out by recentWMAP3 and SNLS survey data. How-
ever, the combined data (CMB+LSS+SNLS) force the
equation of state to vary as −1.001<wDE <−0.875. This
results shows that the heterotic string model is marginally
compatible with dark energy observations.

3.4 Bosonic string

We now turn to the bosonic string, for which Am 	= 0 for
m= 1, 2, 3. All fs contribute to Am in this case. We quote
the expression for A3:

A3(h0) = −45h
5
0−492h

6
0+1530h

7
0−1416h

8
0−342h

9
0

+ ζ(3)

(
15

2
h50−48h

6
0+81h

7
0−18h

8
0+54h

9
0

)

≈ −35.985h50−549.699h
6
0+1627.370h

7
0

−1437.640h80−277.089h
9
0 . (37)

In order to the check if X(h0) > 0 and Ωc < 1, we display
our numerical results in Figs. 5 and 6, which show that

a. X(h0)> 0 for h0 <−6.189 or h0 > 0;
b. Ωc < 1 for h0 > 0.5.

Note that (r2+ q3)> 0, the condition for the existence
of one real root of (27), constrains h0 to be h0 > 0.8. We
therefore conclude that the allowed range for h0 is given by
h0 > 0.8 and this corresponds to −1< weff < −0.17. The
requirement for the dilaton to be real clearly excludes the
possibility of phantom energy. It is really interesting that
the bosonic string responds positively to the requirement
of dark energy.

Fig. 5. The plot of X versus h0 for the bosonic string shows
that X(h0)> 0 for h0 <−6.189 or h0 > 0

Fig. 6. Ωc is plotted here against h0 for the case of the bosonic
string

Before moving to the next section, a remark about A3
is in order. In the case of a type II superstring, A1 and A2
vanish identically, leading to s2 = 0. The sign of A3 then
becomes important for the consistency check on X(h0).
In the cases of heterotic and bosonic strings this is no
longer true. In these cases we have directly checked the
positivity of X(h0) using numerical treatments. Interest-
ingly enough, we have found numerically that, for a generic
range of the parameter h0, it turns out that s1
 s2 telling
us that (33) still holds approximately for numerical values
of h0 that are of interest to us. We then could analyze the
bosonic and heterotic models by checking the sign of A3 as
we did for the case of the type II string. In fact, our nu-
merical check shows that we reproduce the exact numerical
results presented here to a good accuracy.

4 The de Sitter solution and its stability

It is only in the bosonic case that we have the desired so-
lution (normal dark energy). The general expressions for
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the Friedmann equation and the scalar field equation of
motion, given in the appendix, are difficult to analyze in
general. However, in the de Sitter case the equations get
simplified, and in what follows we will analyze the stability
of this solution.
Following Nojiri et al. [11] we define two new variables:

X =
φ̇

H
, Y =H2α′e2φ/φ0 . (38)

With these new variables the Friedmann equation and the
equation of motion for the scalar field (see appendix) can
be written as

dX

dN
=−3X+

12

φ0
Y +

4

φ0
Y 2+

342

φ0
Y 3−

54ζ(3)

φ0
Y 3 ,

(39)

dY

dN
=−
1

2
+
1

12
(X2+Y 2)+

19

2
Y 3−

1

φ0
XY 2

−
144

φ0
XY 3−3ζ(3)Y 3

(
1

2
−
6X

φ0

)
. (40)

These expressions are much simpler, since H is a constant
and its derivatives vanish identically. For φ0 =−0.01 the
fixed points (Xc, Yc) are

Xc→ Yc→

−25.1415 0.0574
−2.4860 0.0062
2.4860 −0.0062
29.4780 −0.0680

−0.0005±0.0060i −0.0072±0.2080i

The first critical point in the table above is relevant for
us since the second turns out to be unstable (see Fig. 7).
The third and the fourth point give a negative value to

Fig. 7. The phase portrait
of cosmological evolution de-
scribed by (1) in the case of
the bosonic string restricted
to the de Sitter case for φ0 =
−0.01.Trajectories starting
anywhere in the phase space
converge at the stable node
(−25.1415, 0.0574)

the string expansion parameter and are, therefore, not rele-
vant. We next examine the stability of the solution around
the critical point (Xc, Yc) = (−25.1415, 0.0574). The per-
turbation matrixM has the following form:

M=

(
−3

Xc
6 −

Y 2c
φ0
(1+ [114−18ζ(3)]Yc)

1
φ0

(
12+8Yc+[1026−162ζ(3)]Y 2c

)
Yc
6 +

Y 2c
2 [57−9ζ(3)]−

2XcYc
φ0
(1+ [171−27ζ(3)]Yc)

)
.

The eigenvalues of the stability matrixM are: −2161.75
and −1.7903. Therefore, the critical point is a stable node.
In general fixed points exist for the range |φ0| ∈ (0,0.05882).

5 Reconstruction
of the universe expansion history: beyond
the low-energy string effective action

In this section we study a more general gravitational ac-
tion, in which the coefficients of the curvature corrections
depend on the dilaton. In addition, a scalar potential is
added. We then consider the reconstruction of such general
modified gravity from the universe expansion history, fol-
lowing the technique developed in [27]. Let us keep ξm(φ)
to be general functions of the scalar field φ. For simplicity,
however, we neglect L(3)c . Then, the action has the follow-
ing form:

S =

∫
d4x
√
−g

×

[
R

2
−∂µφ∂

µφ−V (φ)+ ξ1(φ)L
(1)
c + ξ2(φ)L

(2)
c

]
.

(41)
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Even if one includes L(3)c , we can reconstruct the action,
although the final expression becomes rather complicated.
Neglecting L(3)c , the explicit form of the FRW equation and
the scalar field equation follows:

0 =−3H2+
1

2
φ̇2+V (φ)−24ξ̇1(φ)H

3

−72ξ̇2(φ)H(H
2+ Ḣ)2

+24ξ2(φ){−6H(H
2+ Ḣ)Ḧ

+2(H2+ Ḣ)3−18H2(H2+ Ḣ)2+5H6} , (42)

0 = φ̈+3Hφ̇+V ′(φ)−24ξ′1(φ)(H
2+ Ḣ)

+24ξ′2(φ)(H
6+(H2+ Ḣ)3) . (43)

By combining (42) and (43), we obtain

ξ1(φ(t)) =

∫
dt
a(t)W (t)

H2
, (44)

V (φ(t)) = 3H2−
1

2
φ̇2+24Ha(t)W (t)

+72ξ̇2(φ(t))H(H
2+ Ḣ)

+24ξ2(φ(t))
{
6(H2+ Ḣ)HḦ−2(H2+ Ḣ)3

+18(H2+ Ḣ)2H2−5H6
}
, (45)

W (t) =

∫
dt

a(t)

[
−
Ḣ

4
−
φ̇2

8

+ ξ̇2(φ(t))

{
−13H5−45H3Ḣ−3HḢ2

+
Ḣ3

H
−12(H2+ Ḣ)Ḧ

}

+6ξ2(φ){−11H
4Ḣ−20H2Ḣ2−4Ḣ3

+(−5H3−7HḢ− Ḧ)Ḧ− (H2+ Ḣ)
...
H}

]
.

(46)

Hence, if we consider the theory where ξ1(φ) and V (φ) are
expressed in terms of two functions, g(t) and f(φ), and an
arbitrary ξ2(φ) as follows (compare with a reconstruction
in the less complicated case when only the first order cor-
rection is present [12, 26, 28])

ξ1(φ) =

∫
dt
eg(f(φ))U(φ)

g′(f(φ))2
, (47)

V (φ) = 3g′(f(φ))2−
1

2f ′(φ)2
+24g′(f(φ))eg(f(φ))U(φ)

+
72ξ2(φ)g

′(f(φ))

f ′(φ)
(g′(f(φ))2+ g′′(f(φ)))

+24ξ2(φ)

×
{
6(g′(f(φ))2+ g′′(f(φ)))g′(f(φ))g′′′(f(φ))

−2(g′(f(φ))2+ g′′(f(φ)))3

+18(g′(f(φ))2+ g′′(f(φ)))2g′(f(φ))2

−5g′(f(φ))6
}
, (48)

U(φ) =

∫
f ′(φ)dφ

eg(f(φ))

[
−
g′(f(φ))

4
−

1

8f ′(φ)2

+
ξ′2(φ)

f ′(φ)

{
−13g′(f(φ))5−45g′(f(φ))3g′′(f(φ))

−3g′(f(φ))(g′′(f(φ)))2+
g′′(f(φ))3

g′(f(φ))

−12(g′(f(φ))2+ g′′(f(φ)))g′′′(f(φ))
}

+6ξ2(φ)
{
−11g′(f(φ))4g′′(f(φ))

−20g′(f(φ))2g′′(f(φ))2−4g′′(f(φ))3

+(−5g′(f(φ))3−7g′(f(φ))g′′(f(φ))

− g′′′(f(φ)))g′′′(f(φ))

−(g′(f(φ))2+ g′′(f(φ)))g′′′′(f(φ))
} ]
, (49)

then it is not hard to check that a solution is given by

H = g(t) , φ= f−1(t) . (50)

Here f−1(t) is the inverse function of f(φ).
An example of this situation is the following:

g(t) =H0t+H1 ln

(
t

t0

)
, (51)

and after properly defining f(φ), we obtain

H(t) =H0+
H1

t
. (52)

When t is small, H (52) behaves as that in a universe with
a perfect fluid, withweff =−1+2/3H1, and when t is large,
H behaves as in the de Sitter space, where H is a con-
stant. Then, if we choose H1 = 2/3, we find that before
the acceleration epoch, the universe behaves as a matter
dominated one withweff = 0. After that, it enters the accel-
eration phase.
Another example is

g(t) = H̃0 ln
t

t0
− H̃1 ln

(
t0− t

t0

)
, (53)

which gives

H(t) =
H̃0

t
+
H̃1

t0− t
. (54)

Here H̃0, H̃1, and t0 are positive constants. When t is
small, H in (54) behaves in a way corresponding to the
perfect fluid case, with weff = −1+2/3H̃0. Then, if we
choose H̃0 = 2/3, the matter dominated universe occurs.
On the other hand, when t ∼ t0 is large, H behaves as in
the phantom universe with weff = −1− 2/3H̃1 < −1 and
a big rip singularity at t = t0 will appear. The three-year
WMAP data are analyzed in [29], which shows that the
combined analysis ofWMAP with the SNLS constrains the
dark energy equation of state wDE, pushing it clearly to-
wards the cosmological constant value. The marginalized
best fit values of the equation of state parameter at 68%
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confidence level are given by −1.14≤ wDE ≤−0.93, which
corresponds to H̃1 > 10.7 as H̃1 is positive. In the case
when one takes as a prior that the universe is flat, the com-
bined data gives−1.06≤ wDE ≤−0.90, which corresponds
to H̃1 > 25.0. Therefore, the possibility that wDE <−1 has
not been excluded.
Finally, an additional example is the ΛCDM-type

cosmology:

g(t) =
2

3(1+w)
ln

[
α sinh

(
3(1+w)

2l
(t− t0)

)]
,

α2 ≡
1

3
l2ρ0a

−3(1+w)
0 . (55)

Here l is the length scale given by the cosmological con-
stant l ∼ (10−33 eV)−1 and t0 is a constant. The time-
development of the universe given by g(t) (55) can be re-
alized in the usual Einstein gravity with a cosmological
constant Λ and cold dark matter (CDM), which could be
regarded as dust. The corresponding scalar potentials can
indeed be written explicitly, but they are quite complicated
functions.

6 Construction of the de Sitter solution
for a general effective action

Let us study the possibility of realizing de Sitter space from
the scalar field equation and the Friedmann equation. The
coefficients c1, c2, c3, and also δH, δB in the action (3)–(6)
depend on what kind of string theory – that is, bosonic
string, type II superstring theory, or heterotic string the-
ory – we are considering. Furthermore, these coefficients
could depend on the details of the compactification. More-
over, the suitable compactification often induces a scalar
potential. Hence, here we consider the conditions for the
coefficients which allow the de Sitter space solution. In
other words, we assume the possibility of a more general
effective action like in the previous section.
In the de Sitter space, the Hubble rateH is a constant

H =H0 , (56)

and all the curvatures are covariantly constant. We also as-
sume the scalar field φ to be a constant:

φ= p0 . (57)

For simplicity, c3 terms are neglected and the scalar poten-
tial V (φ) is assumed to be given by

V (φ) = V0e
−2φ/φ0 . (58)

Then the scalar equation has the following form:

0 = V0+24c1α
′x2+96c2α

′2x3 , x≡H0e
2p0/φ0 . (59)

On the other hand, the Friedmann equation is reduced to

0 = V0+3x−12c2α
′2x3 . (60)

By eliminating c2 from (59) and (60), one obtains

0 = 3V0+8x+8c1α
′x2 . (61)

On the other hand, by eliminating V0 from (59) and (60),
we get

0 =−1+8c1α
′x+36α′

2
c2x

2 . (62)

And by further eliminating the x2 term from (61) and (62),
we find

x= x0 ≡
12α′c2V0+ c1

8α′
(
c21−4α

′c2
) . (63)

This expression for x is not always a solution of the two
independent equations (59) and (60), or equivalently (61)
and (62). The condition for x in (62) to be a solu-
tion can be obtained by substituting (63) into (61) (or
equivalently (62)):

0 = 24V0α
′
(
c21−4α

′c2
)2
+8(12α′c2V0+ c1)

(
c21−4α

′c2
)

+ c1(12α
′c2V0+ c1)

2 . (64)

In the particular case when V0 = 0, (64) has the following
form:

9c21 = 32α
′c2 , (65)

and (63) gives

x0 =
c1

8α′
(
c21−4α

′c2
) =− 1

α′c1
. (66)

Therefore, if c1 < 0, there is a possibility that there could
occur a de Sitter space solution. We should note that, even
if the solution exists, the Hubble rate H itself cannot be
determined uniquely. In fact, since

H =
√
x0e

p0/φ0 , (67)

by choosing p0 properly, the value ofH itself could be arbi-
trarily changed. Then the value of H could be determined
by the initial condition.
Hence, we have presented in the above the condition to

be satisfied by the coefficients of our effective action, which
leads naturally to a de Sitter universe. In other words, if
this condition is fulfilled, the early-time and (or) late-time
universe can be inflationary (non-singular) due to stringy
effects. It goes without saying that, again, the stability of
such a de Sitter universe should be checked in each case, as
was done for the bosonic string earlier.

7 Conclusions

In this paper we have considered string loop corrections to
the Einstein–Hilbert action given by (3), with a dynami-
cal dilaton φ. We have explored the cosmological dynamics
of the corresponding modified gravity in the framework
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of a low-energy string effective action. For simplicity, we
have ignored the contribution of the background (radia-
tion/matter) energy density. The higher-order string cor-
rections to gravity, specially the third-order correction in
α′, crucially depend upon the string type. The evolution
equations are quite involved and it is difficult to analyze
them in general. Taking a different route, we have con-
jectured a particular solution, H = h0/t, φ= φ0 ln t/t1 for
h0 > 0 (H = h0/(ts− t), φ= φ0 ln(ts− t)/t1 when h0 < 0).
This solution is important from the dark-energy viewpoint;
we have carefully checked its viability by enforcing a con-
sistency check on the parameters of the solution. This con-
sistency requirement constrains the range of the parameter
h0, which defines the effective equation of state.
The model based upon a type II string turned out to be

the simplest to investigate semi-analytically. The possible
range of h0 in this case is given by 0<h0 < 1/3 correspond-
ing to an uninteresting equation of state (weff > 1). Type II
is clearly ruled out because the string expansion parameter
cannot be negative. Nevertheless, the situation might be
improved in presence of matter. It would also be interest-
ing to examine the fate of a phantom universe in presence
of higher-curvature corrections with a massless dilaton.
In the case of the heterotic string, the dark energy

solution exists for h0 varying as 0.8< h0 < 5.04, which cor-
responds to weff ≥ −0.868. WMAP3 data analyzed with
the SNLS survey constrains the dark energy equation of
state as wDE = −0.97

+0.07
+0.09 at the 68% confidence level,

which puts the heterotic string model under pressure.
However, the combined (CMB+SNLS+LSS) data force
the dark energy equation of state parameter to vary as
−1.001<wDE <−0.875. Thus, the heterotic string is only
marginally compatible with observations.
Cosmological dynamics based upon the bosonic string

turn out to be distinguished amongst all possible string
types. Indeed, the consistency of the model leads to an ef-
fective equation of state given by−1≤weff ≤−0.17, which
is clearly compatible with the data. The stability analysis
is difficult to carry out in this case, in general. We have
studied the de Sitter case (h0→∞) in the bosonic case sep-
arately and demonstrated its stability.
A more general action, with higher-curvature correc-

tions coefficients depending on a dilaton was also con-
sidered. The general reconstruction method could be
developed for such theory, so that a realistic universe ex-
pansion history can be obtained within some class of scalar
potentials. An example that proposes a matter-dominance
era before cosmic acceleration (quintessence, phantom era
or ΛCDM cosmology) is presented. The de Sitter uni-
verse in such a general theory (as well as for the bosonic
string) can arise quite naturally. It is known that, with
the addition of a scalar-GB term only, the low-energy
string effective action can indeed help in the resolution of
the initial singularity problem [30–37]. The appearance
of de Sitter solution in the general case with higher cur-
vature corrections clearly indicates that the resolution of
an initial and/or a final singularity of any type (for the
classification of future, finite-time singularities, see [38])
could be possible taking into account higher-order string
loops.

We conclude that it is not so easy to get the natural
dark energy universe from a low-energy string effective ac-
tion (at the very least up to R4 corrections). It could turn
out that use of even higher order terms is necessary, or that
the consideration of a different compactificationmight lead
to a more realistic universe. In this respect, it could be ex-
pected that taking into account stringy non-perturbative
effects might help. For instance, one future possibility is to
consider not only higher-curvature corrections but also to
include negative powers of such terms (an inverse α′ expan-
sion?) like in the models with positive and negative powers
of the curvature [39].
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Appendix: General evolution equations

The general evolution equations are obtained by varying
the action (1) with respect to φ and the lapse function N .
The scalar field equation takes the following form:

0 = φ̈+3Hφ̇

+
1

φ0

{
−48c1α

′e2φ/φ0H4−192c2α
′2e4φ/φ0H6

+ c3[432ζ(3)−2736δB−432δH]α
′3e6φ/φ0H8

−48c1α
′e2φ/φ0H2Ḣ−288c2α

′2e4φ/φ0H4Ḣ

+ c3[864ζ(3)−5472δB−864δH]α
′3e6φ/φ0H6Ḣ

−288c2α
′2e4φ/φ0H2Ḣ2

+ c3[792ζ(3)−7056δB+1152δH]α
′3e6φ/φ0H4Ḣ2

−96c2α
′2e4φ/φ0Ḣ3

+ c3[288ζ(3)−4320δB−720δH]α
′3e6φ/φ0H2Ḣ3

+ c3[36ζ(3)−1080δB−180δH]α
′3e6φ/φ0Ḣ4

}
.

(A.1)

The Friedmann equation in the general case is given by

3H2 =
1

2
φ̇2+24c2α

′2e4φ/φ0H6

− c3[72ζ(3)−456δB−72δH]α
′3e6φ/φ0H8

−432c2α
′2e4φ/φ0H4Ḣ

+ c3[792ζ(3)−7056δB−1152δH]α
′3e6φ/φ0H6Ḣ

−288c2α
′2e4φ/φ0H2Ḣ2

+ c3[828ζ(3)−10008δB−1656δH]α
′3e6φ/φ0H4Ḣ2

+48c2α
′2e4φ/φ0Ḣ3
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+ c3[168ζ(3)−3600δB−600δH]α
′3e6φ/φ0H2Ḣ3

− c3[18ζ(3)−540δB−90δH]α
′3e6φ/φ0Ḣ4

−144c2α
′2e4φ/φ0H3Ḧ3

+ c3[264ζ(3)−2352δB−384δH]α
′3e6φ/φ0H5Ḧ

−144c2α
′2e4φ/φ0HḢḦ

+ c3[288ζ(3)−4320δB−720δH]α
′3e6φ/φ0H3ḢḦ

+ c3[72ζ(3)−2160δB−360δH]α
′3e6φ/φ0HḢ2Ḧ

+
φ̇

φ0

{
−48c1α

′e2φ/φ0H3−288c2α
′2e4φ/φ0H5

+ c3[864ζ(3)−5472δB−864δH]α
′3e6φ/φ0H7

−576c2α
′2e4φ/φ0H3Ḣ

+ c3[1584ζ(3)−14112δB−2304δH]α
′3e6φ/φ0H5Ḣ

−288c2α
′2e4φ/φ0HḢ2

+ c3[864ζ(3)−12960δB−2160δH]α
′3e6φ/φ0H3Ḣ2

+ c3[144ζ(3)−4320δB−720δH]α
′3e6φ/φ0HḢ3

}
.

(A.2)
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